ClimaCheck

Performance analysis and Energy optimisation

Manufacturing of Chillers/Heat Pumps Development and testing

Hemsida www.climacheck.com

- Complete line-up for field and fixed performance analysis
- Based on patent from 1986.
- ClimaCheck was founded in 2004
- Distribution in 15countries.
- Rapid increase in the global market.
- Customers today: over 30 Manufacturing Companies. Arround 400 contractors from Europe to Asia :
 - Carrier/Trane/Thermia
 - DuPont, Solvay
 - Copeland/Bitzer
 - Carrefour, Metro (Italien), ICA, Axfood, Tesco

Winner 2009 "Refrigeration Product of the Year" at RAC-exhibition in England

Customer demands

- Performance according to specifications
- Correct amount of refrigerant in the system
- Components adjusted to specified operation ambient conditions.

Why so important?

Customer demands:

- Customer should get "what he paid for"
- The Manufacturer wants to secure quality and lower risk of compressor failure
- Correct analysis and documentation increases the competence and trust in the market.

More Possibilities!

Hemsida www.climacheck.com

Developement of Chillers and Heat Pumps:

- Frequence modulation is more and more common-ClimaCheck gives the correct capacity and COP
- New compressor technologies-verification
- New technology should be tested inside the lab-not in field

The ClimaCheck Method!

Hemsida www.climacheck.com

The ClimaCheck Method is based on the following principles

- 1. Pressure and temperature measurement around Pressure the compressor
 - Gives enthalpy difference
- Temperature liquid refrigerant

 Gives enthalpy out of the condenser and into the evaporator.
- Energy balance over compressor gives mass flow

 (Heat losses are known and Thermal efficiency is introduced in the calculation)

Mass flow gives heating- and cooling capacity

Additional information:

- Brine and Coolant temperature

 For accurate control of set values
- 2. Ambient temperatur and humidityFor accurate control of aircooled condensers
- 3. Input power
 - Total input power including pumps etc.

Protocol

	Testat system:						
_	Datum: Driftfall	2006-01-11 Mätta värden		Nominella värden	Avvikelse från		Kommentar
	DatumDatum	2006-01-11			nommen		
	Tid för mätning	14:26:00					
	Kyleffekt	185.1	kW			 %	
	Värmeeffekt	256.1	kW			%	
	COP Kyla	2.44				%	
	COP Värme	3.37				%	
	Elektrisk effekt	75.9	kW			%	
	Cirkulationsflöde värmekrets	37.7	l/s			%	
	Frostkyddsmedel typ	Water					
	Frostkyddsmedel koncentration	100	Volym-%				
	Cirkulationsflöde kylkrets	129.5	l/s			%	
	Frostkyddsmedel typ	Water					
	Frostkyddsmedel koncentration	100	Volym-%				
	Sekundär kall in (Köldb./luft)	10.6	°C				
	Sekundär kall ut (Köldb./luft)	9.5	°C				
	Överhettning Kompressor	7.3	к				
	Sekundär varm in (Kylmedel/luft)	40.6	°C				
	Sekundär varm ut (Kylmedel/luft)	46.4	°C				
	Köldmedium	R134A					
	Kompressor tryckrörstemperatur	80.9	°C				

9

External measurement> small temperature differences > inaccurate measurement has big impact on performance calculation

- System 12°C/ 7°C Brine temerature
 - Inaccuracy of 0.25 K gives 10% error in cooling capacity
- System 40°C/ 45°C Coolant temp
 - Inaccuracy of 0.25 K gives 10% error in cooling capacity
- Control at "0-load" is important and simple
- Perception of time constants increases knowledge

Internal method for refrigeration processes

- Gives detailed and accurate information
 - COP (5%), Cooling- and Heating capacity (7%)
 - Gives more information than performance
 - All components are evaluated
 - Compressor efficiency
 - Heat Exchanger analysis (Medium temp. difference, KA)
 - Correct amount of refrigerant charge
 - Expansion valve control and capacity control
 - etc
 - Faster and more complete analysis
 - Less demand of stability less sensitive towards measuring error
 - 1% on pressure probes
 - Cost efficient

Analysis

- Components
 - Refrigerant charge
 - Subcooling
 - Expansion valve
 - Superheat
 - Compressor
 - Efficiency
 - Condensor
 - Temperature difference
 - Evaporator
 - Temperature difference

- System
 - Temperature levels
 - Stability
 - Control
 - Usage of capacity
 - Heat recovery
 - Free cooling

Manufacturing and testing

Optimisation Control of COP-Heating/cooling capacity Refrigerant charge

